二项式定理
二项式定理
通项公式:
$$ (x+y)^n=\sum_{i=0}^{n}\operatorname{C}^{n}_{i}x^{n-i}y^{i}\ \ (i \isin \{x \isin \Z\ | \ 0 \le x \le n\}) $$
矩阵形式:
$$ (a+b)^n
=
$$
验证推导:
在 n = 1 时,显然成立。
假设二项展开式在 n = m 时成立。
设 n = m + 1,则有:
$$ (a+b)^{m+1}
\
=(a+b)(a+b)^m $$
= a(a + b)m + b(a + b)m
$$ =a\sum_{k=0}^{m}\operatorname{C}_k^ma^{m-k}b^k+b\sum_{j=0}^m\operatorname{C}_j^ma^{m-j}b^{j} $$
$$ =\sum_{k=0}^{m}\operatorname{C}_k^ma^{m-k+1}b^k+\sum_{j=0}^m\operatorname{C}_j^ma^{m-j}b^{j+1} $$
$$ =a^{m+1}+\sum_{k=1}^{m}\operatorname{C}_k^ma^{m-k+1}b^k+\sum_{j=0}^m\operatorname{C}_j^ma^{m-j}b^{j+1} $$
$$ =a^{m+1}+\sum_{k=1}^{m}\operatorname{C}_k^ma^{m-k+1}b^k+\sum_{k=1}^{m+1}\operatorname{C}_{k-1}^ma^{m-k+1}b^k $$
$$ =a^{m+1}+\sum_{k=1}^{m}\operatorname{C}_k^ma^{m-k+1}b^k+\sum_{k=1}^m\operatorname{C}_{k-1}^ma^{m-k+1}b^k+b^{m+1} $$
$$ =a^{m+1}+b^{m+1}+\sum_{k=1}^{m}(\operatorname{C}_k^m+\operatorname{C}_{k-1}^m)a^{m-k+1}b^k $$
$$ =a^{m+1}+b^{m+1}+\sum_{k=1}^{m}\operatorname{C}_k^{m+1}a^{m-k+1}b^k $$
$$ =\sum_{k=0}^{m+1}\operatorname{C}_k^{m+1}a^{m-k+1}b^k $$