二项式定理

二项式定理

通项公式:

(x+y)n=i=0nCinxniyi  (i{xZ  0xn})(x+y)^n=\sum_{i=0}^{n}\operatorname{C}^{n}_{i}x^{n-i}y^{i}\ \ (i \isin \{x \isin \Z\ | \ 0 \le x \le n\})

矩阵形式:

(a+b)n=[a0a1a2an][Cn0Cn1Cn2...Cnn][1...111][b0b1b2b3b4bn](a+b)^n = \begin{bmatrix} a^0 & a^1 & a^2 & \dots & a^n \end{bmatrix} \begin{bmatrix} \operatorname{C}_{n}^{0}\\ & \operatorname{C}_{n}^{1}\\ & & \operatorname{C}_{n}^{2}\\ & & & .\\ & & & & .\\ & & & & & .\\ & & & & & & \operatorname{C}_{n}^{n} \end{bmatrix} \begin{bmatrix} & & & & & & 1\\ & & & & & .\\ & & & & .\\ & & & .\\ & & 1\\ & 1\\ 1 \end{bmatrix} \begin{bmatrix} b^0 \\ b^1 \\ b^2 \\ b^3 \\ b^4 \\ \dots \\ b^n \end{bmatrix}

验证推导:

n=1n=1 时,显然成立。

假设二项展开式在 n=mn=m 时成立。

n=m+1n=m+1,则有:

(a+b)m+1=(a+b)(a+b)m(a+b)^{m+1} \\ =(a+b)(a+b)^m

=a(a+b)m+b(a+b)m=a(a+b)^m+b(a+b)^m

=ak=0mCkmamkbk+bj=0mCjmamjbj=a\sum_{k=0}^{m}\operatorname{C}_k^ma^{m-k}b^k+b\sum_{j=0}^m\operatorname{C}_j^ma^{m-j}b^{j}

=k=0mCkmamk+1bk+j=0mCjmamjbj+1=\sum_{k=0}^{m}\operatorname{C}_k^ma^{m-k+1}b^k+\sum_{j=0}^m\operatorname{C}_j^ma^{m-j}b^{j+1}

=am+1+k=1mCkmamk+1bk+j=0mCjmamjbj+1=a^{m+1}+\sum_{k=1}^{m}\operatorname{C}_k^ma^{m-k+1}b^k+\sum_{j=0}^m\operatorname{C}_j^ma^{m-j}b^{j+1}

=am+1+k=1mCkmamk+1bk+k=1m+1Ck1mamk+1bk=a^{m+1}+\sum_{k=1}^{m}\operatorname{C}_k^ma^{m-k+1}b^k+\sum_{k=1}^{m+1}\operatorname{C}_{k-1}^ma^{m-k+1}b^k

=am+1+k=1mCkmamk+1bk+k=1mCk1mamk+1bk+bm+1=a^{m+1}+\sum_{k=1}^{m}\operatorname{C}_k^ma^{m-k+1}b^k+\sum_{k=1}^m\operatorname{C}_{k-1}^ma^{m-k+1}b^k+b^{m+1}

=am+1+bm+1+k=1m(Ckm+Ck1m)amk+1bk=a^{m+1}+b^{m+1}+\sum_{k=1}^{m}(\operatorname{C}_k^m+\operatorname{C}_{k-1}^m)a^{m-k+1}b^k

=am+1+bm+1+k=1mCkm+1amk+1bk=a^{m+1}+b^{m+1}+\sum_{k=1}^{m}\operatorname{C}_k^{m+1}a^{m-k+1}b^k

=k=0m+1Ckm+1amk+1bk=\sum_{k=0}^{m+1}\operatorname{C}_k^{m+1}a^{m-k+1}b^k


二项式定理
https://lzj-blog.top/2024/11/12/二项式定理/
作者
lzj
发布于
November 12, 2024
许可协议